
Can large language models generalize analogy solving like children can?

Claire E. Stevenson1 and Alexandra Pafford 1 and Han L. J. van der Maas 1,2 and Melanie Mitchell2

1 Psychological Methods, University of Amsterdam, the Netherlands
2 Sante Fe Institute for Complexity, Sante Fe, AZ, USA

c.e.stevenson@uva.nl, h.l.j.vandermaas@uva.nl, mm@santafe.edu

Abstract

In people, the ability to solve analogies such
as “body : feet :: table : ?” emerges
in childhood, and appears to transfer eas-
ily to other domains, such as the visual do-
main “( : ) :: < : ?”. Recent research
shows that large language models (LLMs)
can solve various forms of analogies. How-
ever, can LLMs generalize analogy solving
to other domains like people can? To in-
vestigate this, we had children, adults, and
LLMs solve a series of letter-string analo-
gies (e.g., a b : a c :: j k : ?) in the Latin
alphabet, in a near transfer domain (Greek
alphabet), and a far transfer domain (list of
symbols). Children and adults easily gen-
eralized their knowledge to unfamiliar do-
mains, whereas LLMs did not. This key dif-
ference between human and AI performance
is evidence that these LLMs still struggle
with robust human-like analogical transfer.

1 Introduction

You may be familiar with the analogy “conscious-
ness is like an iceberg”. Here, people intuitively
infer the below-the-surface depth and complex-
ity of consciousness by relating it to an iceberg,
whose mass is mostly found under water, just
as our subconscious dwells under our conscious
minds. This ability emerges in childhood (Goddu
et al., 2020; Gentner, 1988; Stevenson and Hick-
endorff, 2018). However, it is a subject of de-
bate whether analogical reasoning has emerged
in Large Language Models (LLMs) (Webb et al.,
2023; Lewis and Mitchell, 2025; Hodel and West,
2023; Webb et al., 2024). More importantly,
are LLMs able to solve analogies at this level
of conceptual abstraction and generalize to novel
domains (Mitchell, 2021; Shiffrin and Mitchell,
2023)? In this study, we investigate analogical
transfer at two levels of abstraction (near and far),
and compare LLM performance not only to adults,

Figure 1: Human vs LLM performance on letter-string
analogies across alphabet domains.

but also to children, who are still developing ana-
logical reasoning abilities. We ask the question:
Can LLMs can generalize analogy solving like
children can?

Analogical reasoning, the process of applying
a known concept to understand something new
through relational similarity, is fundamental to the
way people think and learn (Holyoak, 2012; Gen-
tner and Hoyos, 2017). This is because we hu-
mans can easily generalize —that is, transfer prin-
ciples discovered in one domain to new domains
that share varying degrees of similarity with the
original (Doumas et al., 2022). This can be prin-
ciples in near contexts that are similar in terms of
concrete attributes (e.g., shape, “a pyramid is like
an iceberg”) or in farther contexts that are only
similar in terms of abstract relations (e.g., abstrac-
tion of depth, “consciousness is like an iceberg”)
(Barnett and Ceci, 2002). Near analogies tend to
be easier for both adults and children to solve than
far analogies (Johnson et al., 2025; Jones et al.,
2022; Thibaut and French, 2016). And, in gen-
eral, adults are better at solving analogies than
children. But, when the required domain knowl-
edge and a causal framing are present, then chil-
dren can solve analogies such as “body is to feet
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as table is to ?” as early as the 3-4 years-old (e.g.,
Goddu et al., 2020; Goswami, 1991). And when
analogies are presented in a more challenging or
far context, young children tend to revert to asso-
ciative strategies, e.g., replying ‘egg’ to ‘dog is to
doghouse as chicken is to ?’ instead of ‘chicken
coop’ (Stevenson and Hickendorff, 2018; Gentner,
1988; Thibaut and French, 2016).

There are many tasks used to study analogical
reasoning and transfer in people, from verbal to
geometric to scene analogy problems (e.g., Ichien
et al., 2020; Richland et al., 2006; Mulholland
et al., 1980). However, many of these tasks are
either not suitable for children (e.g., verbal analo-
gies may contain unfamiliar words or relations for
children) or to LLMs (e.g., visual analogies de-
signed for children are still difficult for today’s
multimodal models Yiu et al. (2024)). Therefore,
we need a domain that is text-based, but doesn’t
require domain knowledge beyond what a typical
child or LLM would know. Letter-string analogies
fit the bill as they require very little domain knowl-
edge and offer an idealized scenario to examine
analogical reasoning in a “pure, uncontaminated
way” (Hofstadter, 1984, p. 3). In these puzzles, a
string of letters is transformed according to one or
more rules, and the task is to use analogy and ap-
ply the same transformations to a new string. For
example, “If abc changes to abd, what should pqr
change to?” (Mitchell, 2021).

Letter-string analogy solving has been stud-
ied in human adults and LLMs. For example,
Webb et al. (2023) showed that GPT-3 is able
to solve letter-string analogies better than college
students. Lewis and Mitchell (2025) showed that
GPT-models solved letter-string analogies at about
60% accuracy in the Latin alphabet domain, some-
what below the level of adults they tested. In-
terestingly, Lewis and Mitchell (2025) and Hodel
and West (2023) found that GPT-3’s performance
degraded when presented with these same analo-
gies using an alphabet of shuffled letters. More-
over, Lewis and Mitchell (2025) showed that GPT-
models had great difficulty solving letter-string
analogies in an unfamiliar alphabet of symbols,
whereas people did not. As such, there is con-
flicting evidence of whether LLMs can general-
ize analogy solving to novel domains (Lewis and
Mitchell, 2025; Webb et al., 2024; Hodel and
West, 2023), something that comes easily to adults
(e.g., Thibaut et al., 2022; Doumas et al., 2022),

and that even children appear capable of when
domains share structural similarities (Chen, 1996;
Gentner and Toupin, 1986; Bobrowicz et al., 2020;
Holyoak et al., 1984). Thus, while there is some
evidence to suggest that LLMs can solve letter-
string analogies at around the same level as peo-
ple, it is unclear whether these models understand
the problem and are actually using analogical rea-
soning (Opiełka et al., 2024; Johnson et al., 2025;
Moskvichev et al., 2023).

In this study, we investigate whether LLMs can
generalize analogy solving to new domains like
adults and 8-year-old children can at two levels of
abstraction. To this end, we compare how adults,
children, and LLMs generalize analogy solving on
the letter-string task to both near (Greek alphabet)
and far (Symbol list) domains.

2 Method

We compared 42 children (7-9 year-olds), 62
adults, and 55 runs of each of four LLMs
(Claude-3.5 Anthropic (2024); Gemma-2 27B
GemmaTeam (2024); GPT-4o OpenAI (2023);
and Llama-3.1 405B Touvro et al (2023)) on a set
of letter-string analogies under three alphabet con-
ditions: Latin, Greek and a Symbol list.

2.1 Materials

2.1.1 Letter-String Analogy Task
Letter-string analogies, pioneered by Hofstadter
1984, are a type of proportional analogy (A is to
B as C is to D) involving alphabetic strings. For
example, “If the string of letters abc changes to
abd. How would you change the string pqrs in
the ‘same way’?” (Mitchell, 2021). Such letter-
string analogies can be solved in multiple ways.
For example, shifting the last letter and respond-
ing pqrt is what people tend to prefer (and what
we consider “correct” in this context). However,
another possible solution could be pqrd, where a
literal rule is applied, namely replacing the last let-
ter with d.

Rules There are several possible transforma-
tions from A to B and generalizations from A to
C as described in Webb et al. (2023). We use only
the simplest transformations of successor (one and
two after), predecessor (one before) and repetition,
and the generalizations are limited to shifting in
the alphabet and letter repetitions —rules that chil-
dren are expected to be familiar with.



(a) Latin

(b) Greek

(c) Symbol

Figure 2: Letter-string analogy task item 1 in (a)
baseline alphabet: Latin, (b) near transfer alpha-
bet: Greek, and (c) far transfer alphabet: Symbol.

Alphabets For each of the items in the Latin al-
phabet we also created a near transfer version us-
ing the Greek alphabet and a far transfer version in
our invented Symbol alphabet: * @ % ! ^ # ~ $ {
? = : (see Figure 2 for an example). We chose the
Greek alphabet as near transfer domain because
Greek symbols are somewhat visually similar to
the Latin alphabet, but otherwise unfamiliar to the
children in our study. We presented actual Greek
symbols to humans, but chose the written version
(i.e., alpha, beta, etc.) for LLMs based on their
ability to list the Greek alphabet in this form upon
request. We chose to use an ordered list of Sym-
bols for far transfer, because it is an unfamiliar ‘al-
phabet’ that neither people nor the LLMs had seen
before in this context, but at the same time were
both able to process (i.e., the children can identify
differences visually and for the LLMs these are
common symbol keys on a keyboard). The con-
structed items for each alphabet were kept consis-
tent, where the same transformations and gener-
alizations from item 1 of the Latin alphabet were
also used for item 1 of the Greek and Symbol al-
phabets. See Table 1 in the Results section for an
overview of all items.

2.1.2 Human Data Collection
Procedure Both children and adults completed
the task in a browser. They were first shown

the Latin alphabet and told that they would solve
puzzles with these. For adults there was a sim-
ple example with feedback as the study was car-
ried out fully online. For children, the interface
was explained and demonstrated in person. Par-
ticipants then solved two simple practice items
without feedback (used to ensure understanding of
task). Then for each alphabet, they were shown the
list of letters/symbols and told they would again
solve puzzles using these letters/symbols, where
the Greek and Symbol alphabets were referred to
as “secret code” letters for children. There were
five items for each alphabet, with 15 items total.

Adults We collected adult data online from flu-
ent English speakers through the Prolific research
participant recruitment platform. We recruited 68
adults of 18 years or older (M=24.0, SD =7.33,
50% female) who had completed secondary edu-
cation or higher and resided in the Netherlands or
neighboring countries (as children were recruited
in the Netherlands). We also required that they
have no language disorders and have (corrected-
to-) normal vision to ensure they could see/process
the task, that they use a device at least 2x a week
(to ensure digital fluency), and that they have a
95% or higher approval rating on Prolific to ensure
high quality data from the participants. Based on
the pre-registered exclusion criteria for adults (an-
swering >80% of items), 6 adults were excluded.

Children Data was collected from 44 children
(7-9 year-olds, M=8.26, SD=0.67) at a local
school on an electronic tablet. The recruited
school is a public Montessori school and empha-
sizes natural materials and does not use tablets or
computers in this age group. All children from
the participating classrooms were included in the
study, as language disorders are generally not yet
assessed in this age group in the Netherlands.
The researchers gave spoken instructions given the
limited reading abilities in this age group. The
children then completed the task independently.
We excluded two children, because they did not
complete the task.

2.1.3 LLM Data Collection
We collected data from LLMs from four types
of models: Anthropic’s Claude-3 and Claude-3.5;
Google’s Gemma-2-9B and Gemma-2 27B; Open
AI’s GPT-3, GPT-3.5, GPT-4, and GPT-4o; Meta’s
Llama-3.1-8B, Llama-3.1-70B, Llama-3.1-405B.
For each model type, the newest and largest model



had the best performance. Therefore, to provide
clear and concise results our main results compar-
ing human and LLM performance report on this
selected set of models: Anthropic’s Claude-3.5,
Google’s Gemma-2 27B, Open AI’s GPT-4o, and
Meta’s Llama-3.1 405B. A brief overview of the
results of other models can be found in Section 4;
the full dataset is available in our GitHub reposi-
tory.

Procedure We presented the analogies in chat
completion mode using Python APIs from An-
thropic for Claude models, from Open AI for GPT
models and from Together AI for the remaining
models, which are all open source. We specified
a temperature of 0 for near-deterministic data col-
lection and set the maximum number of tokens to
10.

Prompt The LLM general instruction
was as follows: We are going to
do puzzles with the letters or
symbols ‘[Latin alphabet|Greek
alphabet|Symbol list]’. Example
’if a changes to b, then j
changes to k’.

Per item the LLMs received the instruction
and item as follows: The [letter|symbol]
list is ‘[Latin alphabet|Greek
alphabet|Symbol list]’. If [A]
changes to [B], what does [C]
change to ?.

Pre-pending previous conversation Also, fol-
lowing (Webb et al., 2023)’s approach to adminis-
tering verbal analogies and digit matrices, all pre-
vious conversation with the LLM was pre-pended
to each successive item so that the models could
learn while testing just as people could. This
seemed especially important because the exact
same items with the same rules were applied in the
same order from one alphabet set to the next. We
also ran the tasks without pre-pending previous
conversation, which generally resulted in lower
LLM performance (see Appendix C).

Prompting templates We tested 5 different
prompt templates for presenting items to LLMs,
as prompt engineering can change the LLMs’
performance on the task. Results are re-
ported for the best performing template as shown
above: If A changes to B, what does
C change to?. See the Appendix 8 for more

details on the different templates and results.

Differences between Human and LLM Proce-
dures To keep the conditions for the LLM data
collection similar to that of people and, especially
to fairly compare LLM results to those of chil-
dren, we presented all analogies in a zero-shot set-
ting using the same instructions that we spoke to
the children. There were two exceptions. First,
with children we referred to the Greek and Sym-
bol alphabets as “secret code letters”, whereas this
was ‘alphabet’ and ‘(ordered) list’ respectively for
adults and LLMs. Second, the LLMs received the
worked example ’if a changes to b, then j changes
to k’ that humans did not receive.

Item variants for LLMs To enable robust com-
parisons between individual LLMs and groups
of people, we adopted a similar methodology to
Webb et al. 2023 and administered approximately
as many variants of the task to each LLM as we
had people who solved it. To do so, we created
variants of each item by systematically shifting all
of the characters in the item. For example, “a b :
a c :: l m : ?” became “b c : b d :: m n : ?”. For
each of the 5 items per alphabet administered to
humans (see Table 1), we created 4 item variants,
i.e., shifted 1-4 elements to the left and/or right.
We then systematically selected item variants to
create 55 unique parallel testlets (required num-
ber based on power analysis from pre-registration;
Note: we administered each testlet as a ‘conversa-
tion’ containing multiple messages to recreate how
we tested humans, see 2.1.3). This allowed us to
have robust estimates of LLM performance, while
creating some variation in LLM data and enabling
us to compute SE’s for statistical analyses.

3 Results

We use mixed ANOVAs to (1) compare perfor-
mance between our between-subjects participant
groups (Adults, Children, and each of the LLMs)
on the Latin alphabet and (2) test whether each
participant group could generalize analogy solving
by performing similarly across alphabets (i.e., our
repeated within-subjects factor). All plots show
the means and standard errors as error bars.



Table 1: Base item set administered to adults, children, and LLMs.

Item ID Alphabet A B C D AB Rule AC Rule

A Practice a b j k successor_1 shift
B Practice c d c d d j k j k k repeat_1 shift

1 Latin a b a c g h g i successor_1 shift
2 Latin c d c c e e m n m m o o successor_1, repeat_2 shift
3 Latin e f e h k l k n successor_2 shift
4 Latin d e d f f g h g i i successor_1, repeat_1 shift
5 Latin c d b d m m n n l l n n predecessor_1 shift, repeat_2

1 Greek α β α γ ζ η ζ θ successor_1 shift
2 Greek γ δ γ γ ε ε κ λ κ κ µ µ successor_1, repeat_2 shift
3 Greek ε ζ ε θ ι κ ι µ successor_2 shift
4 Greek η θ η ι ι λ µ λ ν ν successor_1, repeat_1 shift
5 Greek β γ α γ ν ν ξ ξ µ µ ξ ξ predecessor_1 shift, repeat_2

1 Symbol * @ * % ~ $ ~ { successor_1 shift
2 Symbol % ! % % ˆ ˆ = : = = ) ) successor_1, repeat_2 shift
3 Symbol @ % @ ˆ # ~ # { successor_1 shift
4 Symbol ! ˆ ! # # $ { $ = = successor_1, repeat_1 shift
5 Symbol ˆ # ! # = = : : { { : : predecessor_1 shift, repeat_2

3.1 RQ1: How well do LLMs solve
letter-string analogy problems in the
Latin alphabet compared to adults and
children?

We expected LLMs to be able to solve letter-string
analogies with the Latin alphabet at the same level
as adults (Webb et al., 2023) and that both adults
and LLMs would outperform children (Thibaut
and French, 2016) (hypotheses H1a-c). Similar to
what we expected, adults and some LLMs, except
Google’s Gemma-2 27B and Anthropic’s Claude
3.5, performed better than children in the Latin
alphabet domain. Open AI’s GPT-4o performed
similarly to adults, followed closely by Meta’s
Llama-3.1 405B. See Figure 1 and Table 2 for
more detailed results.

3.2 RQ2: How well do adults, children and
LLMs generalize letter-string analogy
solving from Latin to Greek (near) and
Symbol (far) alphabets?

As expected, adults and children performed simi-
larly across alphabets (see Figure 1). But, as we
suspected, LLM performance indeed degraded in
less familiar alphabets (ANOVA results shown in
Table 3). More specifically, for each model, per-
formance degraded significantly from the Latin to
Greek alphabet (posthoc Bonferonni-corrected t-
test results all p<.001, except for Llama-3.1 405Bp
= 0.012) and then again from the Greek alphabet

to the Symbol list (posthoc Bonferonni-corrected
t-test results all p<.001).

3.3 RQ3: Why can’t LLMs generalize
letter-string analogy solving like
children?

3.3.1 Performance by Item
To understand why the LLM’s had trouble gen-
eralizing letter-string analogy solving we exam-
ined item-by-item performance. Table 4 shows an
overview. Here we see that the LLMs and humans
perform best on item 1, that involves only the first
successor transformation, and worst on item 5, that
involves both the predecessor transformation and
repetition generalization. Item 2 also involves the
same repetition rule as item 5, but was solved bet-
ter by LLMs and children; therefore, it appears
that the predecessor rule is what gives both LLMs
and children the most trouble. The other item peo-
ple and LLMs have relatively more trouble with is
item 3. This item involves the second successor
rule. In sum, the predecessor and second succes-
sor rules appear to be the most difficult rules from
our item set for people and LLMs to apply.

3.3.2 Next-Previous Letter Task
We designed the Next-Previous Letter Task to
check that the LLMs had the requisite knowledge
of predecessor and successor to solve letter-string
analogies. For this new task we provided an or-



Participant Group n Latin Greek Symbol

Mean SD Mean SD Mean SD

Adults 62 0.88 0.16 0.91 0.13 0.89 0.23
Children 41 0.62 0.22 0.66 0.23 0.67 0.30
Claude-3.5 54 0.68 0.18 0.62 0.21 0.46 0.24
Gemma-2 27B 54 0.60 0.24 0.39 0.20 0.14 0.15
GPT-4o 54 0.85 0.18 0.63 0.21 0.48 0.18
Llama-3.1 405B 54 0.79 0.16 0.74 0.19 0.27 0.20

Table 2: Descriptive statistics on letter-string analogy performance by Participant Group and Alphabet.

Table 3: Post hoc ANOVA Results for main Alphabet effect by Participant Group

Participant Group Effect DFn DFd F p Adjusted

Adults 1.59 96.9 0.95 1.000
Children 2.00 76.0 0.27 1.000
Claude-3.5 1.65 87.6 29.5 <.001
Gemma-2 27B 2.00 106.0 88.2 <.001
GPT-4o 2.00 100.0 55.0 <.001
Llama-3.1 405B 1.70 90.1 135.0 <.001

Table 4: Mean proportion correct (SD) by Participant Group for each Item

Item
Participant Group 1 2 3 4 5

Adults 0.97 (0.18) 0.94 (0.25) 0.82 (0.39) 0.94 (0.24) 0.81 (0.40)
Children 0.85 (0.36) 0.75 (0.44) 0.52 (0.50) 0.76 (0.43) 0.38 (0.49)
Claude-3.5 0.90 (0.30) 0.65 (0.48) 0.54 (0.50) 0.62 (0.49) 0.20 (0.40)
Gemma-2 27B 0.62 (0.49) 0.27 (0.45) 0.38 (0.49) 0.37 (0.48) 0.25 (0.43)
GPT-4o 0.92 (0.27) 0.73 (0.45) 0.45 (0.50) 0.78 (0.41) 0.39 (0.49)
Llama-3.1 405B 0.83 (0.37) 0.62 (0.49) 0.53 (0.50) 0.57 (0.50) 0.44 (0.50)



Figure 3: LLM performance by rule type across alpha-
bet domains.

dered list of letters/symbols and asked the LLMs
what the previous and next two letters were given
a specific letter. Each rule was tested 5 times, re-
sulting in 20 items total.

We used this optimized prompt: Here is
an ordered list of letters or
symbols [Latin alphabet|Greek
alphabet|Symbol list]. Which
letter or symbol is [one|two]
[before|after] [X]?. See Table 5 for
rules and example items.

Table 5: Next-Previous Letter Task: Example Items
From the Latin Alphabet.

X correct Rule

c d next_1
c e next_2
d c prev_1
e c prev_2

As can be seen in Figure 3, all models do best
when asked to identify the next or previous letter
and worse when it concerns identifying two be-
fore or two after. Furthermore, Claude-3.5 per-
formed well and similarly in all three domains,
which is in contrast to its letter-string analogy per-
formance that degrades from baseline to near to far
domains. Similarly, GPT-4o performs well on the
Next-Previous task in the Latin and Greek domain,
but in the analogy task, its performance degrades
from Latin to Greek. For Llama-3.1 405B transfer
from the Latin to Greek to Symbol domain is sim-
ilar across tasks, where in both tasks it does well
with the Latin and Greek alphabets, but not the
Symbol alphabet. Gemma-2 27B’s performance is

surprisingly more spotty here in the Greek domain
than the Symbol domain. In conclusion, these re-
sults could explain why the LLMs have trouble
with item 3, involving the second successor, but
the results do not explain why they have trouble
with item 5 involving the predecessor.

3.3.3 Rule Check Task
To better pinpoint why the LLMs had difficulty
generalizing to other alphabets, we created a sim-
plified version of the original analogy task that ex-
plicitly tested each rule in isolation. LLM prompts
were exactly the same as in our original letter-
string task, see Section 2.1.3.

The rules were: (1) successor_1, the next letter;
(2) successor_2, letter two places after; (3) pre-
decessor_1, the previous letter; (4) predecessor_2,
letter two places before; (5) repetition_1, repeat-
ing the last letter and (6) repetition_2, repeating
both letters. Each rule was tested five times. See
Table 6 for examples.

Table 6: Rule Check Task: Example Items From the
Latin Alphabet.

A B C D Rule AB

c d h i successor_1
c e h j successor_2
d c h g predecessor_1
e c h f predecessor_2

c d c d d h i h i i repetition_1
c d c c d d h i h h i i repetition_2

As Figure 4 shows, the LLMs we tested can
solve all rules in the Latin alphabet and have no
problem with repetition rules in the Greek and
Symbol domains. The successor and predeces-
sor rules were solved to differing degrees in the
Greek alphabet, with Claude-3.5 performing best
followed by GPT-4o. All models had trouble
with the successor_2 and predecessor rules in the
Symbol alphabet, where only the successor_1 rule
sometimes formed an exception. This makes sense
given the predict-the-next-token goal that LLMs
are trained on (McCoy et al., 2024).

3.3.4 Error Analysis
In general, when solving letter-string analogies
there are often multiple rules that could underlie
the change from A to B (Hofstadter and Mitchell,
1994). Because we use very short strings, there are
generally only two clearly correct responses. We
considered the rules that people would generally



Figure 4: Rule-specific performance across alphabet
domains for LLMs.

prefer when responding, to be “correct”, such as if
ab changes to ac, then gh changes to gi. However,
the literal rule of replacing the last letter with c,
with response gc could also be considered correct.

Error Categories To examine errors in more
detail we created a set of categories based on those
from (Lewis and Mitchell, 2025) and extended
these to account for common errors in children
(Stevenson and Hickendorff, 2018). In the Lit-
eral rule category, the change from A to B is lit-
erally copied to C such as a b : a c c :: g h : g c c
rather than providing the more common response
of g i i. In the One rule category, the response is
partially correct, but only (part of) one of the rules
in the problem was applied, such as in responses
to the previous example, g h h (only repetition ap-
plied) or g i (only successor applied). Partially cor-
rect responses are common in children when prob-
lem load supersedes processing capacity (Steven-
son and Hickendorff, 2018). In the Incorrect rule
category, one of the other rules from our item set
(i.e., successor, predecessor, repetition) was ap-
plied; for example, if the successor rule was used
instead of the predecessor rule. For the Copy rule,
the A, B or C term was copied as copying the C-
term is common in young children (Stevenson and
Hickendorff, 2018; Opiełka et al., 2024). Finally,
all remaining erroneous responses were placed in
the Other rule category. Given that our task was
less complex than in (Lewis and Mitchell, 2025)
(i.e., shorter strings, fewer rules), we were able to
automatically code these categories.

Table 7 shows that adults and children did not
use the Literal rule, whereas all models used it
sometimes. For Gemma-2 27B and GPT-4o the
Literal rule was one of the most common error

types. The One rule was used most often in errors
by Claude-3.5. The Incorrect and Copy rules were
not used very often by people or models. And the
Other rules were used most often by all, except
Claude-3.5.

String Distance between “Correct” and “Erro-
neous” Responses For each erroneous response
we computed the Levenshtein string distance, also
known as optimal string alignment distance, from
the expected “correct” response to the given re-
sponse. This distance counts the minimum num-
ber of edit operations (insertion, deletion, sub-
stitution) needed to change one string into the
other. Here we investigate whether there are dif-
ferences in mean Levenshtein distance between
adults, children and LLMs for “erroneous” re-
sponses. Figure 5 shows that that the Levenshtein
distance for “erroneous” responses is greater for
children on all alphabets than for LLMs. For
adults, this is only the case for the Symbol alpha-
bet. For LLMs the Levenshtein distance hovers
just under the 2 for all alphabets. Note also that the
standard errors for LLMs are also much smaller,
but this is because the adults and sometimes chil-
dren (Greek, Symbol alphabets) had far fewer “er-
roneous” responses to sample from. These results
tells us that when children provide “erroneous” an-
swers their responses tended to differ largely from
the expected response. For example, three chil-
dren responded ‘m m’ to the item ‘If c d changes
to b d, what does m m n n change to?’, which has
a Levenshtein distance of 6 from the expected re-
sponse ‘l l n n’. The LLMs tended to provide 1
or 2 expected letters and 1 or 2 unexpected ones.
For example, on the same item (and its variants)
six GPT-4o runs provided ‘l m m n’ as a response,
with a Levenshtein distance of 2 from the expected
response.

4 RQ4: What is the effect of model size
on letter-string analogy performance?

In general, larger LLMs perform better on reason-
ing tasks than smaller LLMs (Wei et al., 2022;
Huang and Chang, 2022). As Figure 6 shows,
typical scaling laws generally appear to hold for
how well LLMs generalize analogy solving in the
letter-string domain. Especially in the Symbol do-
main, we observe a marked performance increase
from smaller to larger models.



Table 7: Proportions of error categories by participant group. Note. 5% of children’s responses were empty.

Participant Group Correct Literal Rule One Rule Incorrect Rule Copy Rule Other Rule

Adults 0.89 0.00 0.02 0.00 0.00 0.09
Children 0.66 0.00 0.06 0.01 0.00 0.23

Claude-3.5 0.58 0.05 0.19 0.08 0.01 0.09
Gemma-2 27B 0.38 0.21 0.12 0.05 0.02 0.22

GPT-4o 0.65 0.13 0.07 0.02 0.00 0.12
Llama-3.1 405B 0.60 0.08 0.10 0.02 0.00 0.20

Figure 5: Mean Levenshtein string distance between
incorrect and expected responses.

5 Discussion

Our main finding is that the LLMs we tested, us-
ing the same prompts given to children, were not
able to generalize letter-string analogy solving like
children can. LLMs perform at or above the level
of children on letter-string analogies in the fa-
miliar Latin alphabet, but their performance on
these same problems reduces somewhat when us-
ing the Greek alphabet (near transfer) and deterio-
rates greatly when using our Symbol alphabet (far
transfer).

Why can’t LLMs generalize when solving
letter-string analogies? For some LLMs, this ap-
pears to be because they do not meet underly-
ing requisites, such as indicating the predeces-
sor or second successor of a letter in sequence.
This would make sense given the predict-the-next-
token goal that LLMs are trained on (McCoy et al.,
2024). We tested this using the Next-Previous let-
ter task, where models were explicitly prompted
with an ordered list of letters or symbols and
asked to identify the (second) successor or pre-
decessor to a given letter or symbol. These re-
sults explain why the LLMs have trouble with
analogies involving a second successor. But, the

LLMs had little trouble identifying predecessors
in the Next-Previous Letter task, so these results
do not fully explain why LLM performance de-
grades from Latin to Greek and Symbol domains.

The problem with LLMs transfer from the Latin
to other domains seems to lie in that the concep-
tual abstraction of what constitutes an alphabet,
such as being an ordered sequence, does not flex-
ibly map to less familiar domains like it does in
people. Evidence for this comes from the Rule
Check task, where we tested LLMs on each rule
in isolation. Here repetition rules could easily
be applied to novel alphabets. This makes sense
because repeating a character in a string can be
done without knowing the alphabet. In contrast,
LLMs had more trouble with predecessor and sec-
ond successor rules. Both require an alphabet that
is encoded as an ordered list of letters/symbols
and an abstraction of what constitutes previous
and next. This result aligns with previous work
where GPT models could solve letter-string analo-
gies with familiar alphabets in their standard order,
but for shuffled alphabets performance dropped
drastically, whereas for people performance re-
mained the same (Hodel and West, 2023; Lewis
and Mitchell, 2025). We noted that in the Greek
domain the letters were also ordered by unicode
value, but in our Symbol domain they were not,
which could perhaps explain why Greek items
were easier. So, to check whether order was also
a factor in our Symbol domain, we adapted the
task to make the Symbol alphabet also ordered by
their unicode values. However, this adaptation re-
sulted only in some improvement in the Claude
and Gemma models, and our findings still held
(see Appendix D).

We also investigated which kinds of errors peo-
ple and LLMs made. This is important because
letter-string analogies, like many four-term visual
analogies, apply ambiguous rules (e.g., Opiełka
et al., 2024), and can be solved correctly in mul-



(a) Claude (b) Gemma (c) GPT (d) Llama

Figure 6: Effect of LLM size on proportion correct in letter-string analogy solving across alphabets Latin,
Greek and Symbol.

tiple ways (Hofstadter and Mitchell, 1994). The
two main ways to solve the items in our task
were what we considered the “correct” way (e.g.,
a b : a c c :: g h : g i i) and the “literal” way
(e.g., a b : a c c :: g h : g c c). People did not
use the “literal” rule, whereas the models all did to
varying degrees (ranging from 5-21%). The other
main difference between human and LLM errors,
was that children’s erroneous responses were gen-
erally more distant (Levenshtein string distance)
from the “correct” response than those of LLMs.
This could be because children reverted to non-
analogical strategies that we didn’t account for in
our error coding scheme, given that this is the
first time letter-string analogies have been admin-
istered to children.

Based on our results, LLMs appear unable to
create on-the-fly representations of novel alpha-
bets in the context of the letter-string analogies
as well as the next-previous letter task —despite
being given the ordered list of letters/symbols be-
fore each item. This inability was clear for both
larger and smaller LLMs, although relative perfor-
mance did scale with model size. A possible ex-
planation lies in work studying the internal repre-
sentations of LLMs, where abstract concepts like
"antonym" show invariant linear representations,
but "previous" and "next" do not (Opiełka et al.,
2025). It appears that LLMs require an in-weight
linear representation of an alphabet to successfully
solve letter-string analogies. For novel alphabets,
next-token-prediction does help them solve analo-
gies with simple repetition and successor rules,
but not with more complex rules and not at the
level of children. Indeed, Webb et al. 2024 found
that GPT-4 can only perform these abstractions by
creating and executing code to map the novel al-
phabet to new positions and compute previous and
next letters. This is of course very different from
how children solve such problems.

In contrast, our results show that in children, fa-

miliarity with letters or symbols does not influence
letter-string analogy solving. As such, our results
add to the accumulating evidence that questions
whether reasoning actually occurs in these LLMs
(Wu et al., 2024; Gendron et al., 2024; Razeghi
et al., 2022). Interestingly, in 1980, Schank con-
cluded that there wasn’t much intelligence in arti-
ficial intelligence given its limited ability to gen-
eralize. Similarly, Doumas et al. (2022) argue
that robust analogical transfer is a uniquely hu-
man ability. Based on our findings so far we con-
cur, and now ask the question: Is generalization to
unfamiliar domains indeed what separates human
general intelligence from that of artificial general
intelligence? The challenge now is to create un-
contaminated far generalization tasks that AI mod-
els have not been trained on to answer this ques-
tion.
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Ethics This study was approved by the ethics board at the University of Amsterdam, Social and Be-
havioural Sciences on May 24, 2023 (ID: FMG-2495).

Preregistration The hypotheses, methods and analyses were preregistered on the Open Science Frame-
work (OSF) prior to ethical approval. These were updated on July 26, 2023, to accommodate new meth-
ods for LLM data collection. The main deviation from preregistration was using different LLMs than
previously specified.

Data Availability Preregistration, materials, data, and code are publicly available on the project’s
OSF repository: https://osf.io/jdty3/. A direct link to all data and code can be found here:
https://github.com/cstevenson-uva/llm_letterstring_generalization/.

B LLM prompt engineering results

We administered each letter-string analogy item to LLMs using 5 different prompt templates, as prompt
engineering can change the LLMs’ performance on the task. The templates were as follows.

1. If a b c changes to a b d, what does i j k change to?

2. a b c is to a b d, as i j k is to ?

3. a b c → a b d \n e f g →

4. Let’s try to complete the pattern:\n [a b c] [a b d] \n [i j k] [

5. [a b c] [a b d] \n [i j k] [

As can be seen in Figure or Table 8, template 1, derived from (Mitchell, 2021) worked best overall.
Template 4, the best template found by (Webb et al., 2023) worked well in Latin and Greek alphabets,
but not as well for the Symbol list, which makes sense because [ and ] are symbols themselves. Our
results are based on template 1.

Table 8: Prompt Template Performance Mean Correct (SE) for Selected Models

Model Template 1 Template 2 Template 3 Template 4 Template 5

Claude-3.5 0.82 (0.10) 0.88 (0.08) 0.71 (0.11) 0.53 (0.13) 0.71 (0.11)
Gemma-2 27B 0.59 (0.12) 0.59 (0.12) 0.41 (0.12) 0.41 (0.12) 0.29 (0.11)
GPT-4o 0.82 (0.10) 0.71 (0.11) 0.71 (0.11) 0.71 (0.11) 0.71 (0.11)
Llama-3.1 405B 0.71 (0.11) 0.59 (0.12) 0.59 (0.12) 0.59 (0.12) 0.35 (0.12)

Total 0.74 (0.05) 0.69 (0.06) 0.60 (0.06) 0.56 (0.06) 0.52 (0.06)

C LLM results without previous messages

We readministered the items from the template comparison (see Appendix B) to examine whether it was
better to administer the items one-by-one or to include all previous message history, i.e. the previous
items and their responses.

As can be seen in Table 9, it was generally advantageous to include previous message history versus
not. Of the LLMs we tested, there may be two possible exceptions to look out for in future work. Both
Gemma-2 27B and Llama-3.1 405B had significantly higher accuracy (i.e., no overlapping SE margins)
without message history on the Symbol alphabet. In both cases, the main result of lower performance on
Greek and Symbol alphabets versus Latin alphabet still holds.

https://osf.io/jdty3/
https://github.com/cstevenson-uva/llm_letterstring_generalization/


Table 9: Mean Correct (SE) for LLMs with versus without Message History.

Model Latin Greek Symbol
Incl. History No History Incl. History No History Incl. History No History

Claude-3.5 0.88 (0.07) 0.65 (0.10) 0.80 (0.08) 0.75 (0.10) 0.40 (0.10) 0.20 (0.09)
Gemma-2 27B 0.64 (0.10) 0.73 (0.08) 0.48 (0.10) 0.43 (0.09) 0.04 (0.04) 0.20 (0.07)
GPT-4o 0.84 (0.07) 0.73 (0.08) 0.64 (0.10) 0.43 (0.09) 0.60 (0.10) 0.57 (0.09)
Llama-3.1 405B 0.76 (0.09) 0.67 (0.09) 0.56 (0.10) 0.67 (0.09) 0.20 (0.08) 0.43 (0.09)

D Ordered Symbol Task

We re-administered the items from the template comparison (see Appendix B) to examine whether or-
dering the symbols by unicode value would improve the models’ performance on the Symbol alphabet.
This did result in improved performance in Claude 3.5 and Gemma 2, where Claude 3.5 improved to the
same performance level of the Greek alphabet. For GPT-4o and Llama 3.1 there were no significant im-
provements from the reordering. In all cases our main finding —that performance degraded from Latin
to the Greek and Symbol alphabets —still held. However, in future experiments using a Symbol domain,
it is important to realize that LLMs generally benefit by ordering symbols by unicode value.

Table 10: Mean (SE) correct for LLMs with versus without Symbols were ordered by unicode value.

Model Latin Greek Symbol (unordered) Symbol (ordered)

Claude-3.5 0.84 (0.07) 0.72 (0.09) 0.40 (0.10) 0.72 (0.09)
Gemma-2 27B 0.64 (0.10) 0.48 (0.10) 0.04 (0.04) 0.36 (0.10)
GPT-4o 0.76 (0.09) 0.60 (0.10) 0.60 (0.10) 0.60 (0.10)
Llama-3.1 405B 0.72 (0.09) 0.68 (0.10) 0.20 (0.08) 0.28 (0.09)

Total 0.74 (0.44) 0.62 (0.49) 0.31 (0.47) 0.49 (0.50)


